SEISMIC HAZARD ZONE REPORT FOR THE PACIFICO MOUNTAIN
7.5-MINUTE QUADRANGLE,
LOS ANGELES COUNTY, CALIFORNIA

CALIFORNIA GEOLOGICAL SURVEY'S PUBLICATION SALES OFFICES:

Southern California Regional Office
888 South Figueroa Street, Suite 475
Los Angeles, CA 90017
(213) 239-0878

Publications and Information Office
801 K Street, MS 14-31
Sacramento, CA 95814-3531
(916) 445-5716

Bay Area Regional Office
345 Middlefield Road, MS 520
Menlo Park, CA 94025
(650) 688-6327
<table>
<thead>
<tr>
<th>Date</th>
<th>Revision Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/27/05</td>
<td>BPS address correction, weblink updates</td>
</tr>
<tr>
<td>10/10/05</td>
<td>Bay Area Regional Office and Southern California Regional Office addresses updated</td>
</tr>
</tbody>
</table>
CONTENTS

EXECUTIVE SUMMARY ... vii

INTRODUCTION ..1

SECTION 1 LIQUEFACTION EVALUATION REPORT Liquefaction Zones in the Pacifico Mountain 7.5-Minute Quadrangle, Los Angeles County, California ..3

PURPOSE ..3

BACKGROUND ..4

METHODS SUMMARY ..4

SCOPE AND LIMITATIONS ...5

PART I ...5

PHYSIOGRAPHY ...5

GEOLOGY ..6

GROUND WATER ..7

PART II ...8

LIQUEFACTION POTENTIAL ...8

LIQUEFACTION SUSCEPTIBILITY ...9

LIQUEFACTION OPPORTUNITY ...9

LIQUEFACTION ZONES ..9

ACKNOWLEDGMENTS ..11

REFERENCES ..11

SECTION 2 EARTHQUAKE-INDUCED LANDSLIDE EVALUATION REPORT Earthquake-Induced Landslide Zones in the Pacifico Mountain 7.5-Minute Quadrangle, Los Angeles County, California ...13
ILLUSTRATIONS

Figure 2.1. Yield Acceleration vs. Newmark Displacement for the 1992 Landers Earthquake - Lucerne Record……………………………………………………………………………………………………24

Figure 3.1. Pacifico Mountain 7.5-Minute Quadrangle and portions of adjacent quadrangles, 10 percent exceedance in 50 years peak ground acceleration (g)—Firm rock conditions.33

Figure 3.2. Pacifico Mountain 7.5-Minute Quadrangle and portions of adjacent quadrangles, 10 percent exceedance in 50 years peak ground acceleration (g)—Soft rock conditions.34

Figure 3.3. Pacifico Mountain 7.5-Minute Quadrangle and portions of adjacent quadrangles, 10 percent exceedance in 50 years peak ground acceleration (g)—Alluvium conditions.....35

Figure 3.4. Pacifico Mountain 7.5-Minute Quadrangle and portions of adjacent quadrangles, 10 percent exceedance in 50 years peak ground acceleration—Predominant earthquake.....37

Figure 3.5. Pacifico Mountain 7.5-Minute Quadrangle and portions of adjacent quadrangles, 10 percent exceedance in 50 years magnitude-weighted pseudo-peak acceleration for alluvium - Liquefaction opportunity……………………………………………………………………..38

Table 1.1. Quaternary Map Units in the Pacifico Mountain Quadrangle as Shown on Plate1.1 (after Dibblee, 2001). ………7

Table 2.1. Summary of the Shear Strength Statistics for the Pacifico Mountain Quadrangle....22

Table 2.2. Summary of Shear Strength Groups for the Pacifico Mountain Quadrangle.22

Table 2.3. Hazard Potential Matrix for Earthquake-Induced Landslides in Pacifico Mountain Quadrangle……26

Plate 1.1. Quaternary geologic map of portions of the Pacifico Mountain 7.5-Minute Quadrangle, California……42

Plate 1.2. Depth to historically shallowest ground water, Pacifico Mountain 7.5-Minute Quadrangle, California………43

Plate 2.1. Landslide inventory and shear test sample locations, Pacifico Mountain 7.5-Minute Quadrangle, California……44
EXECUTIVE SUMMARY

This report summarizes the methods and sources of information used to prepare the Seismic Hazard Zone Map for the Pacifico Mountain 7.5-Minute Quadrangle, Los Angeles County, California. The map displays the boundaries of zones of required investigation for liquefaction and earthquake-induced landslides over an area of approximately 12 square miles at a scale of 1 inch = 2,000 feet.

The Pacifico Mountain Quadrangle lies in north-central Los Angeles County. Nearly the entire quadrangle is rugged San Gabriel Mountain terrain cut by numerous large canyons. The center of the area is 10 miles south of Palmdale and 30 miles north of the Los Angeles Civic Center. Near the eastern boundary Little Rock Creek empties into Little Rock Reservoir. On the western side, creeks in Aliso Canyon and Soledad Canyon flow westward into the Soledad Basin. On the south, Pacifico Mountain is the highest point in the quadrangle at 7,124 feet. The lowest point (below 3,200 feet) is in Soledad Canyon. The boundary of the Angeles National Forest is nearly coincident with the northern quadrangle boundary and makes a jog around a six square mile area in the northwestern corner near Soledad Pass. Parcels of private land occur within the forest, especially in the Kentucky Springs and Aliso Canyon areas. Land use includes ranching, rural residential areas, and recreation. Access to the region is via the State Highway 14 (Antelope Valley Freeway), the Angeles Forest Highway, Mount Emma Road, and several forest roads.

The map is prepared by employing geographic information system (GIS) technology, which allows the manipulation of three-dimensional data. Information considered includes topography, surface and subsurface geology, borehole data, historical ground-water levels, existing landslide features, slope gradient, rock-strength measurements, geologic structure, and probabilistic earthquake shaking estimates. The shaking inputs are based upon probabilistic seismic hazard maps that depict peak ground acceleration, mode magnitude, and mode distance with a 10 percent probability of exceedance in 50 years.

In the Pacifico Mountain Quadrangle the liquefaction zone is restricted to the bottoms of canyons. The steepness of the mountainous terrain results in approximately 19 percent of the evaluated area of the quadrangle lying within an earthquake-induced landslide hazard zone.
How to view or obtain the map

Seismic Hazard Zone Maps, Seismic Hazard Zone Reports and additional information on seismic hazard zone mapping in California are available on the California Geological Survey's Internet page: http://www.conservation.ca.gov/CGS/index.htm

Paper copies of Official Seismic Hazard Zone Maps, released by CGS, which depict zones of required investigation for liquefaction and/or earthquake-induced landslides, are available for purchase from:

BPS Reprographic Services
945 Bryant Street
San Francisco, California 94105
(415) 512-6550

Seismic Hazard Zone Reports (SHZR) summarize the development of the hazard zone map for each area and contain background documentation for use by site investigators and local government reviewers. These reports are available for reference at CGS offices in Sacramento, San Francisco, and Los Angeles. **NOTE: The reports are not available through BPS Reprographic Services.**
INTRODUCTION

The Seismic Hazards Mapping Act (the Act) of 1990 (Public Resources Code, Chapter 7.8, Division 2) directs the California Department of Conservation (DOC), Division of Mines and Geology (DMG) [now called California Geological Survey (CGS)] to delineate seismic hazard zones. The purpose of the Act is to reduce the threat to public health and safety and to minimize the loss of life and property by identifying and mitigating seismic hazards. Cities, counties, and state agencies are directed to use the seismic hazard zone maps in their land-use planning and permitting processes. They must withhold development permits for a site within a zone until the geologic and soil conditions of the project site are investigated and appropriate mitigation measures, if any, are incorporated into development plans. The Act also requires sellers (and their agents) of real property within a mapped hazard zone to disclose at the time of sale that the property lies within such a zone. Evaluation and mitigation of seismic hazards are to be conducted under guidelines adopted by the California State Mining and Geology Board (SMGB) (DOC, 1997). The text of this report is on the Internet at http://gmw.consrv.ca.gov/shmp/webdocs/sp117.pdf

The Act directs SMGB to appoint and consult with the Seismic Hazards Mapping Act Advisory Committee (SHMAAC) in developing criteria for the preparation of the seismic hazard zone maps. SHMAAC consists of geologists, seismologists, civil and structural engineers, representatives of city and county governments, the state insurance commissioner and the insurance industry. In 1991 SMGB adopted initial criteria for delineating seismic hazard zones to promote uniform and effective statewide implementation of the Act. These initial criteria provide detailed standards for mapping regional liquefaction hazards. The Act also directed CGS to develop a set of probabilistic seismic maps for California and to research methods that might be appropriate for mapping earthquake-induced landslide hazards.

In 1996, working groups established by SHMAAC reviewed the prototype maps and the techniques used to create them. The reviews resulted in recommendations that 1) the process for zoning liquefaction hazards remain unchanged and 2) earthquake-induced landslide zones be delineated using a modified Newmark analysis.

This Seismic Hazard Zone Report summarizes the development of the hazard zone map. The process of zoning for liquefaction uses a combination of Quaternary geologic mapping, historical ground-water information, and subsurface geotechnical data. The process for zoning earthquake-induced landslides incorporates earthquake loading, existing landslide features, slope gradient, rock strength, and geologic structure. Probabilistic seismic hazard maps, which are the underpinning for delineating seismic hazard zones, have been prepared for peak ground acceleration, mode magnitude, and mode distance with a 10 percent probability of exceedance in 50 years (Petersen and others, 1996) in accordance with the mapping criteria.
This report summarizes seismic hazard zone mapping for potentially liquefiable soils and earthquake-induced landslides in the Pacifico Mountain 7.5-Minute Quadrangle.
SECTION 1
LIQUEFACTION EVALUATION REPORT

Liquefaction Zones in the
Pacifico Mountain 7.5-Minute Quadrangle,
Los Angeles County, California

By
Elise Mattison and Janis L. Hernandez
California Department of Conservation
California Geological Survey

PURPOSE
The Seismic Hazards Mapping Act (the Act) of 1990 (Public Resources Code, Chapter 7.8, Division 2) directs the California Department of Conservation (DOC), Division of Mines and Geology (DMG) [now called California Geological Survey (CGS)] to delineate Seismic Hazard Zones. The purpose of the Act is to reduce the threat to public health and safety and to minimize the loss of life and property by identifying and mitigating seismic hazards. Cities, counties, and state agencies are directed to use seismic hazard zone maps developed by CGS in their land-use planning and permitting processes. The Act requires that site-specific geotechnical investigations be performed prior to permitting most urban development projects within seismic hazard zones. Evaluation and mitigation of seismic hazards are to be conducted under guidelines adopted by the California State Mining and Geology Board (SMGB) (DOC, 1997b). The text of this report is on the Internet at http://gmw.consrv.ca.gov/shmp/webdocs/sp117.pdf

Following the release of DMG Special Publication 117 (DOC, 1997b), agencies in the Los Angeles metropolitan region sought more definitive guidance in the review of geotechnical investigations addressing liquefaction hazards. The agencies made their request through the Geotechnical Engineering Group of the Los Angeles Section of the American Society of Civil Engineers (ASCE). This group convened an implementation committee under the auspices of the Southern California Earthquake Center (SCEC).
The committee, which consisted of practicing geotechnical engineers and engineering geologists, released an overview of the practice of liquefaction analysis, evaluation, and mitigation techniques (SCEC, 1999). This text is also on the Internet at: http://www.scec.org/

This section of the evaluation report summarizes seismic hazard zone mapping for potentially liquefiable soils in the Pacifico Mountain 7.5-Minute Quadrangle. Section 2 (addressing earthquake-induced landslides) and Section 3 (addressing potential ground shaking) complete the report, which is one of a series that summarizes production of similar seismic hazard zone maps within the state (Smith, 1996). Additional information on seismic hazards zone mapping in California is on CGS’s Internet web page: http://www.conservation.ca.gov/CGS/index.htm

BACKGROUND

Liquefaction-induced ground failure historically has been a major cause of earthquake damage in southern California. During the 1971 San Fernando and 1994 Northridge earthquakes, significant damage to roads, utility pipelines, buildings, and other structures in the Los Angeles area was caused by liquefaction-induced ground displacement.

Localities most susceptible to liquefaction-induced damage are underlain by loose, water-saturated, granular sediment within 40 feet of the ground surface. These geological and ground-water conditions exist in parts of southern California, most notably in some densely populated valley regions and alluviated floodplains. In addition, the potential for strong earthquake ground shaking is high because of the many nearby active faults. The combination of these factors constitutes a significant seismic hazard in the southern California region in general, including areas in the Pacifico Mountain Quadrangle.

METHODS SUMMARY

Characterization of liquefaction hazard presented in this report requires preparation of maps that delineate areas underlain by potentially liquefiable sediment. The following were collected or generated for this evaluation:

- Existing geologic maps were used to provide an accurate representation of the spatial distribution of Quaternary deposits in the study area. Geologic units that generally are susceptible to liquefaction include late Quaternary alluvial and fluvial sedimentary deposits and artificial fill

- Ground-water maps constructed to show the historically highest known ground-water levels

- Geotechnical data analyzed to evaluate liquefaction potential of deposits

- Information on potential ground shaking intensity based on CGS probabilistic shaking maps
The data collected for this evaluation were processed into a series of geographic information system (GIS) layers using commercially available software. The liquefaction zone map was derived from a synthesis of these data and according to criteria adopted by the SMGB (DOC, 2000).

SCOPE AND LIMITATIONS

Evaluation for potentially liquefiable soils generally is confined to areas covered by Quaternary (less than about 1.6 million years) sedimentary deposits. Such areas within the Pacifico Mountain Quadrangle consist mainly of canyons. CGS’s liquefaction hazard evaluations are based on information on earthquake ground shaking, surface and subsurface lithology, geotechnical soil properties, and ground-water depth, which is gathered from various sources. Although selection of data used in this evaluation was rigorous, the quality of the data used varies. The State of California and the Department of Conservation make no representations or warranties regarding the accuracy of the data obtained from outside sources.

Liquefaction zone maps are intended to prompt more detailed, site-specific geotechnical investigations, as required by the Act. As such, liquefaction zone maps identify areas where the potential for liquefaction is relatively high. They do not predict the amount or direction of liquefaction-related ground displacements, or the amount of damage to facilities that may result from liquefaction. Factors that control liquefaction-induced ground failure are the extent, depth, density, and thickness of liquefiable materials, depth to ground water, rate of drainage, slope gradient, proximity to free faces, and intensity and duration of ground shaking. These factors must be evaluated on a site-specific basis to assess the potential for ground failure at any given project site.

Information developed in the study is presented in two parts: physiographic, geologic, and hydrologic conditions in PART I, and liquefaction and zoning evaluations in PART II.

PART I

PHYSIOGRAPHY

Study Area Location and Physiography

The Pacifico Mountain Quadrangle covers about 62 square miles in north-central Los Angeles County. Nearly the entire quadrangle is rugged San Gabriel Mountain terrain cut by numerous large canyons. Near the eastern boundary Little Rock Creek empties into Little Rock Reservoir. A major tributary of Little Rock Creek is Santiago Canyon. On the western side of the quadrangle, creeks in Aliso and Soledad canyons flow westward into the Soledad Basin. The center of the area is 10 miles south of Palmdale and 30 miles north of the Los Angeles Civic Center. Pacifico Mountain, near the
southern boundary, is the highest point in the quadrangle at 7,124 feet. The lowest point (below 3,200 feet) is in Soledad Canyon in the northwestern corner of the map area.

The boundary of the Angeles National Forest is nearly coincident with the northern quadrangle boundary and makes a jog around a six square mile area in the northwestern corner near Soledad Pass. Several parcels of private land are within the forest, especially in the Kentucky Springs and Aliso Canyon areas. All of the private land is unincorporated Los Angeles County land. Aside from rural residential areas, land use in the quadrangle includes ranching and recreation. About 19 percent (12 square miles) of the quadrangle was evaluated for zoning.

Access to the region is via the State Highway 14 (Antelope Valley Freeway), the Angeles Forest Highway, Mount Emma Road, and several forest roads.

GEOLOGY

Bedrock and Surficial Geology

Geologic units that generally are susceptible to liquefaction include late Quaternary alluvial and fluvial sedimentary deposits and artificial fill. For this evaluation, CGS staff digitized the Dibblee Geological Foundation’s geologic map (Dibblee, 2001) and modified it by removing landslide deposits and revising contacts between bedrock and surficial units to better conform to the topographic contours of the U.S. Geological Survey 7.5-minute quadrangle. CGS staff further refined the contacts by reviewing air-photos and digital orthophoto quarter quadrangles, and with field reconnaissance. The distribution of Quaternary deposits on this map was used in combination with other data, discussed below, to evaluate liquefaction susceptibility and develop the Seismic Hazard Zone Map and is shown on Plate 1.1.

Active channel deposits containing boulders, gravel and sand (Qg) are in Little Rock, Kentucky Springs, Beartrap, and Aliso canyons, and other smaller drainages. Younger surficial sediments of Holocene age (Qa) include gravel with minor sand and silt within the valleys and canyon flood plains. Pleistocene unconsolidated older alluvium (Qoa) is in Aliso, Soledad, and Kentucky Springs canyons on the western portion of the map, and in Little Rock Canyon to the east. These deposits are slightly elevated areas of dissected coarse alluvial sand and gravel, containing crystalline bedrock gravel, with some boulders.
Table 1.1. Quaternary Map Units in the Pacifico Mountain Quadrangle as Shown on Plate 1.1 (after Dibblee, 2001).

<table>
<thead>
<tr>
<th>Map Unit</th>
<th>Description</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qg</td>
<td>gravel and sand of stream channels</td>
<td>Holocene</td>
</tr>
<tr>
<td>Qa</td>
<td>alluvial gravel, sand, and silt/clay of valleys and canyon flood plains</td>
<td>Holocene</td>
</tr>
<tr>
<td>Qoa</td>
<td>alluvial gravel and sand of mostly plutonic rock detritus</td>
<td>Pleistocene</td>
</tr>
</tbody>
</table>

The bedrock geology for the Pacifico Mountain Quadrangle consists almost entirely of crystalline bedrock belonging to the San Gabriel Mountains basement complex. The oldest bedrock exposed in the map area is Precambrian dark gray hornblende diorite gabbro (hdg). The predominant crystalline bedrock exposures belong to Lowe Granodiorite (lgd, lgdb, lgdp, and lgdh). Late Oligocene Vasquez Formation rocks (Tva and Tvs) unconformably overly the basement rocks at the northern border of the quadrangle as volcanic flows, sandstone and basal conglomerate sedimentary rocks (Dibblee, 2001). See the earthquake-induced landslide portion (Section 2) of this report for further details.

Structural Geology

The dominant structural element within the Pacifico Mountain Quadrangle is the San Gabriel Mountains basement complex, which covers most of the quadrangle and is locally incised by the Aliso, Kentucky Springs, Little Rock and smaller canyons, oriented north to northwest. Across the northern map boundary and toward the northwest quarter of the map, this area is characterized by the eastern portion of the Soledad Basin, which is a southwest-plunging syncline that includes strata of the Vasquez Formation (Muehlberger, 1958). Minor folds and subparallel faults disrupt the symmetry of the Soledad Basin, especially near the northeastern map corner, where the bedrock has been influenced by thrust faulting (Jahns and Muehlberger, 1954). A few northeast-trending faults have been mapped in the San Gabriel Mountains basement crystalline rocks. Although the area contains some faults, no fault rupture hazard zones have been delineated within the mapped area (DOC, 1997a). However, the San Andreas Fault Zone is less than a mile north of the Pacifico Mountain Quadrangle and could contribute strong ground shaking to the study area (see Section 3 of this report).

GROUND WATER

Saturation reduces the effective normal stress acting on loose, near-surface sandy deposits, thereby increasing the likelihood of earthquake-induced liquefaction (Youd, 1973), which typically occurs where ground water is shallower than about 50 feet (SCEC, 1999). Item 4a of the SMGB criteria for delineating seismic hazard zones in California (DOC, 2000; Criteria for Zoning section of this report) excludes saturated deposits deeper than 40 feet below the surface. CGS liquefaction evaluations, therefore, concentrate on
areas where investigations indicate that young Quaternary sediment might be saturated within 40 feet of the ground surface.

Natural processes and human activities can cause ground-water fluctuations, making it impossible to anticipate future water levels. In its analysis of geologic data, CGS uses the shallowest ground-water levels known, to accommodate the possibility of deep ground water returning to historically shallow levels. This has occurred in basins where water-importing urbanized areas have replaced vast farm and orchard lands that were characterized by substantial ground-water withdrawal (for example, Simi Valley, Ventura County) as well as in basins where large-scale ground-water recharge programs are employed.

For purposes of seismic hazard zoning in the Pacifico Mountain Quadrangle study area, depth to shallow ground water in alluviated canyon environments is the elevation difference between the measured or estimated high water surface and the upper limit of adjacent liquefiable Quaternary deposits. Plate 1.2 shows a range of depth to historically shallow ground water within the canyons because the map scale disallows detailed contour lines.

PART II

LIQUEFACTION POTENTIAL

Liquefaction may occur in water-saturated sediment during moderate to great earthquakes. Liquefied sediment loses strength and may fail, causing damage to buildings, bridges, and other structures. Many methods for mapping liquefaction hazard have been proposed. Youd (1991) highlights the principal developments and notes some of the widely used criteria. Youd and Perkins (1978) demonstrate the use of geologic criteria as a qualitative characterization of liquefaction susceptibility and introduce the mapping technique of combining a liquefaction susceptibility map and a liquefaction opportunity map to produce a liquefaction potential map. Liquefaction susceptibility is a function of the capacity of sediment to resist liquefaction. Liquefaction opportunity is a function of the potential seismic ground shaking intensity.

The method applied in this study for evaluating liquefaction potential is similar to that of Tinsley and others (1985). Tinsley and others (1985) applied a combination of the techniques used by Seed and others (1983) and Youd and Perkins (1978) for their mapping of liquefaction hazards in the Los Angeles region. CGS’s method combines geotechnical analyses, geologic and hydrologic mapping, and probabilistic earthquake shaking estimates, but follows criteria adopted by the SMGB (DOC, 2000).
LIQUEFACTION SUSCEPTIBILITY

Liquefaction susceptibility reflects the relative resistance of a soil to loss of strength when subjected to ground shaking. Physical properties of soil such as sediment grain-size distribution, compaction, cementation, saturation, and depth govern the degree of resistance to liquefaction. Some of these properties can be correlated to a sediment’s geologic age and environment of deposition. With increasing age, relative density may increase through cementation of the particles or compaction caused by the weight of the overlying sediment. Grain-size characteristics of a soil also influence susceptibility to liquefaction. Sand is more susceptible than silt or gravel, although silt of low plasticity is treated as liquefiable in this investigation. Cohesive soils generally are not considered susceptible to liquefaction. Such soils may be vulnerable to strength loss with remolding and represent a hazard that is not addressed in this investigation. Soil characteristics and processes that result in higher measured penetration resistances generally indicate lower liquefaction susceptibility. Thus, blow count and cone penetrometer values are useful indicators of liquefaction susceptibility.

Saturation is required for liquefaction, and the liquefaction susceptibility of a soil varies with the depth to ground water. Very shallow ground water increases the susceptibility to liquefaction (soil is more likely to liquefy). Soils that lack resistance (susceptible soils) typically are saturated, loose and sandy. Soils resistant to liquefaction include all soil types that are dry, cohesive, or sufficiently dense.

LIQUEFACTION OPPORTUNITY

Liquefaction opportunity is a measure, expressed in probabilistic terms, of the potential for strong ground shaking. Analyses of in-situ liquefaction resistance require assessment of liquefaction opportunity. The minimum level of seismic excitation to be used for such purposes is the level of peak ground acceleration (PGA) with a 10 percent probability of exceedance over a 50-year period (DOC, 2000). The earthquake magnitude used in CGS’s analysis is the magnitude that contributes most to the calculated PGA for an area.

For the Pacifico Mountain study area, CGS has calculated PGAs of 0.53 to 0.75 g, resulting from an earthquake of magnitude 7.8. The PGA and magnitude values are based on de-aggregation of the probabilistic hazard at the 10 percent in 50-year hazard level (Petersen and others, 1996; Cramer and Petersen, 1996). See the ground motion portion (Section 3) of this report for further details.

LIQUEFACTION ZONES

Criteria for Zoning

Areas underlain by materials susceptible to liquefaction during an earthquake were included in liquefaction zones using criteria developed by the Seismic Hazards Mapping
Act Advisory Committee and adopted by the SMGB (DOC, 2000). Under those guideline criteria, liquefaction zones are areas meeting one or more of the following:

1. Areas known to have experienced liquefaction during historical earthquakes
2. All areas of uncompacted artificial fill containing liquefaction-susceptible material that are saturated, nearly saturated, or may be expected to become saturated
3. Areas where sufficient existing geotechnical data and analyses indicate that the soils are potentially liquefiable
4. Areas where existing geotechnical data are insufficient

In areas of limited or no geotechnical data, susceptibility zones may be identified by geologic criteria as follows:

 a) Areas containing soil deposits of late Holocene age (current river channels and their historic floodplains, marshes and estuaries), where the M7.5-weighted peak acceleration that has a 10 percent probability of being exceeded in 50 years is greater than or equal to 0.10 g and the water table is less than 40 feet below the ground surface; or

 b) Areas containing soil deposits of Holocene age (less than 11,000 years), where the M7.5-weighted peak acceleration that has a 10 percent probability of being exceeded in 50 years is greater than or equal to 0.20 g and the historical high water table is less than or equal to 30 feet below the ground surface; or

 c) Areas containing soil deposits of latest Pleistocene age (11,000 to 15,000 years), where the M7.5-weighted peak acceleration that has a 10 percent probability of being exceeded in 50 years is greater than or equal to 0.30 g and the historical high water table is less than or equal to 20 feet below the ground surface.

Application of SMGB criteria to liquefaction zoning in the Pacifico Mountain Quadrangle is summarized below.

Areas of Past Liquefaction

No documentation of historic or paleoseismic liquefaction in the Pacifico Mountain Quadrangle was found during this study.

Artificial Fills

Artificial fill was not mapped in the Pacifico Mountain study area

Areas with Sufficient Existing Geotechnical Data

Geotechnical logs of boreholes in the Pacifico Mountain study area were not found during the data collection phase of this study.
Areas with Insufficient Existing Geotechnical Data

Gravel and sand of major stream channels (Qg) and alluvial gravel, sand, and silt/clay of valleys and canyon flood plains (Qa) in the Pacifico Mountain study area are designated zones of required investigation for liquefaction where considered saturated. Liquefaction zonation is based on above criterion 4a for Qg and 4b for Qa.

ACKNOWLEDGMENTS

Thanks to Dan Schneidereit, Bruce Hick, and staff at Earth Systems Consultants; Gary Gilbreath, Robert Pierotti, and Timothy Ross at California Department of Water Resources; Charles T. Nestle and Robert Thomas at Los Angeles County Department of Public Works; and Steve Phillips, Devin Galloway, and Peter Martin of the U.S. Geological Survey. Additionally, the authors acknowledge CGS staff Terilee McGuire, Lee Wallinder and Bob Moskovitz for providing extraordinary GIS support; Barbara Wanish for preparing the final liquefaction hazard zone maps and graphic displays; Al Barrows for text contributions and editorial support; and student assistants Ben Wright and Andrea Ignacio for digitizing support.

REFERENCES

California Department of Conservation, Division of Mines and Geology, 1997b, Guidelines for evaluating and mitigating seismic hazards in California: Division of Mines and Geology Special Publication 117, 74 p.

California Department of Conservation, Division of Mines and Geology, 2000, Recommended criteria for delineating seismic hazard zones in California: Division of Mines and Geology Special Publication 118, 12 p.

Dibblee, T.W., Jr., 2001, Geologic map of the Pacifico Mountain and Palmdale (south half) quadrangles, Los Angeles County, California: Dibblee Geological Foundation Map DF-76, scale 1:24,000.

Jahns, R.H. and Muehlberger, W.R., 1954, Geology of the Soledad Basin, Los Angeles County, California, in Geology of Southern California, California: Division of Mines and Geology Bulletin 170, map sheet no. 6, approximate scale 1:84,800.

Smith, T.C., 1996, Preliminary maps of seismic hazard zones and draft guidelines for evaluating and mitigating seismic hazards: California Geology, v. 49, no. 6, p. 147-150.

Southern California Earthquake Center, 1999, Recommended procedures for implementation of DMG Special Publication 117 guidelines for analyzing and mitigating liquefaction in California: Southern California Earthquake Center, University of Southern California, 63 p.

SECTION 2
EARTHQUAKE-INDUCED LANDSLIDE EVALUATION REPORT

Earthquake-Induced Landslide Zones in the Pacifico Mountain 7.5-Minute Quadrangle, Los Angeles County, California

By
Rick I. Wilson, and Janis L. Hernandez

California Department of Conservation
California Geological Survey

PURPOSE

The Seismic Hazards Mapping Act (the Act) of 1990 (Public Resources Code, Chapter 7.8, Division 2) directs the California Department of Conservation (DOC), Division of Mines and Geology (DMG) [now called California Geological Survey (CGS)] to delineate Seismic Hazard Zones. The purpose of the Act is to reduce the threat to public health and safety and to minimize the loss of life and property by identifying and mitigating seismic hazards. Cities, counties, and state agencies are directed to use seismic hazard zone maps prepared by CGS in their land-use planning and permitting processes. The Act requires that site-specific geotechnical investigations be performed prior to permitting most urban development projects within the hazard zones. Evaluation and mitigation of seismic hazards are to be conducted under guidelines established by the California State Mining and Geology Board (DOC, 1997). The text of this report is on the Internet at http://gmw.consrv.ca.gov/shmp/webdocs/sp117.pdf

Following the release of DMG Special Publication 117 (DOC, 1997), agencies in the Los Angeles metropolitan region sought more definitive guidance in the review of geotechnical investigations addressing landslide hazards. The agencies made their
request through the Geotechnical Engineering Group of the Los Angeles Section of the American Society of Civil Engineers (ASCE). This group convened an implementation committee in 1998 under the auspices of the Southern California Earthquake Center (SCEC). The committee, which consisted of practicing geotechnical engineers and engineering geologists, released an overview of the practice of landslide analysis, evaluation, and mitigation techniques (SCEC, 2002). This text is also on the Internet at: http://www.scec.org/

This section of the evaluation report summarizes seismic hazard zone mapping for earthquake-induced landslides in the Pacifico Mountain 7.5-Minute Quadrangle. Section 1 (addressing liquefaction) and Section 3 (addressing earthquake shaking), complete the report, which is one of a series that summarizes the preparation of seismic hazard zone maps within the state (Smith, 1996). Additional information on seismic hazard zone mapping in California can be accessed on the California Geological Survey's Internet page: http://www.conservation.ca.gov/CGS/index.htm

BACKGROUND

Landslides triggered by earthquakes historically have been a significant cause of earthquake damage. In California, large earthquakes such as the 1971 San Fernando, 1989 Loma Prieta, and 1994 Northridge earthquakes triggered landslides that were responsible for destroying or damaging numerous structures, blocking major transportation corridors, and damaging life-line infrastructure. Areas that are most susceptible to earthquake-induced landslides are steep slopes in poorly cemented or highly fractured rocks, areas underlain by loose, weak soils, and areas on or adjacent to existing landslide deposits. These geologic and terrain conditions exist in many parts of California, including numerous hillside areas that have already been developed or are likely to be developed in the future. The opportunity for strong earthquake ground shaking is high in many parts of California because of the presence of numerous active faults. The combination of these factors constitutes a significant seismic hazard throughout much of California, including the hillside areas of the Pacifico Mountain Quadrangle.

METHODS SUMMARY

The mapping of earthquake-induced landslide hazard zones presented in this report is based on the best available terrain, geologic, geotechnical, and seismological data. If unavailable or significantly outdated, new forms of these data were compiled or generated specifically for this project. The following were collected or generated for this evaluation:

• Digital terrain data were used to provide an up-to-date representation of slope gradient and slope aspect in the study area.
• Geologic mapping was used to provide an accurate representation of the spatial distribution of geologic materials in the study area. In addition, a map of existing landslides, whether triggered by earthquakes or not, was prepared.

• Geotechnical laboratory test data were collected and statistically analyzed to quantitatively characterize the strength properties and dynamic slope stability of geologic materials in the study area.

• Seismological data in the form of CGS probabilistic shaking maps and catalogs of strong-motion records were used to characterize future earthquake shaking within the mapped area.

The data collected for this evaluation were processed into a series of GIS layers using commercially available software. A slope stability analysis was performed using the Newmark method of analysis (Newmark, 1965), resulting in a map of landslide hazard potential. The earthquake-induced landslide hazard zone was derived from the landslide hazard potential map according to criteria developed in a CGS pilot study (McCrink and Real, 1996; McCrink, 2001) and adopted by the State Mining and Geology Board (DOC, 2000).

SCOPE AND LIMITATIONS

The methodology used to make this map is based on earthquake ground-shaking estimates, geologic material-strength characteristics and slope gradient. These data are gathered from a variety of outside sources. Although the selection of data used in this evaluation was rigorous, the quality of the data is variable. The State of California and the Department of Conservation make no representations or warranties regarding the accuracy of the data gathered from outside sources.

Earthquake-induced landslide zone maps are intended to prompt more detailed, site-specific geotechnical investigations as required by the Act. As such, these zone maps identify areas where the potential for earthquake-induced landslides is relatively high. Due to limitations in methodology, it should be noted that these zone maps do not necessarily capture all potential earthquake-induced landslide hazards. Earthquake-induced ground failures that are not addressed by this map include those associated with ridge-top spreading and shattered ridges. It should also be noted that no attempt has been made to map potential run-out areas of triggered landslides. It is possible that such run-out areas may extend beyond the zone boundaries. The potential for ground failure resulting from liquefaction-induced lateral spreading of alluvial materials, considered by some to be a form of landsliding, is not specifically addressed by the earthquake-induced landslide zone or this report. See Section 1, Liquefaction Evaluation Report for the Pacifico Mountain Quadrangle, for more information on the delineation of liquefaction zones.

The remainder of this report describes in more detail the mapping data and processes used to prepare the earthquake-induced landslide zone map for the Pacifico Mountain
Quadrangle. The information is presented in two parts. Part I covers physiographic, geologic and engineering geologic conditions in the study area. Part II covers the preparation of landslide hazard potential and landslide zone maps.

PART I

PHYSIOGRAPHY

Study Area Location and Physiography

The Pacifico Mountain Quadrangle covers about 62 square miles in north-central Los Angeles County. Nearly the entire quadrangle is rugged San Gabriel Mountain terrain cut by numerous large canyons. Near the eastern boundary Little Rock Creek empties into Little Rock Reservoir. A major tributary of Little Rock Creek is Santiago Canyon. On the western side of the quadrangle creeks in Aliso Canyon and Soledad Canyon flow westward into the Soledad Basin. The center of the area is 10 miles south of Palmdale and 30 miles north of the Los Angeles Civic Center. Pacifico Mountain, near the southern boundary, is the highest point in the quadrangle at 7,124 feet. The lowest point (below 3,200 feet) is in Soledad Canyon in the northwestern corner of the map area.

The boundary of the Angeles National Forest is nearly coincident with the northern quadrangle boundary and makes a jog around a six square mile area in the northwestern corner near Soledad Pass. Several parcels of private land occur within the forest, especially in the Kentucky Springs and Aliso Canyon areas. All of the private land is unincorporated Los Angeles County land. Land use in the quadrangle includes ranching, rural residential areas, and recreation. About 19 percent (12 square miles) of the quadrangle was evaluated for zoning.

Access to the region is via the State Highway 14 (Antelope Valley Freeway), the Angeles Forest Highway, Mount Emma Road, and several forest roads.

Digital Terrain Data

The calculation of slope gradient is an essential part of the evaluation of slope stability under earthquake conditions. An accurate slope gradient calculation begins with an up-to-date map representation of the earth’s surface in the form of a digital topographic map. Within the Pacifico Mountain Quadrangle, a Level 2 digital elevation model (DEM) was obtained from the USGS (U.S. Geological Survey, 1993). This DEM, prepared from the 7.5-minute quadrangle topographic contours based on 1957 aerial photography, has a 10-meter horizontal resolution and a 7.5-meter vertical accuracy. The entire mapping area was reviewed with recent (2000) aerial photography to determine if areas of significant change to the topography had occurred; no areas of mass grading were found.

A slope map was made from the DEM using a third-order, finite difference, center-weighted algorithm (Horn, 1981). The DEM was also used to make a slope aspect map.
The manner in which the slope and aspect maps were used to prepare the zone map will be described in subsequent sections of this report.

GEOLOGY

Bedrock and Surficial Geology

The bedrock geologic map used in this slope stability evaluation was obtained from the Dibblee Geological Foundation (Dibblee, 2001) and digitized by CGS staff for this study. Bedrock units are described in detail in this section. Surficial geologic units are briefly described here and are discussed in more detail in Section 1, Liquefaction Evaluation Report.

CGS geologists modified the digital geologic map in the following ways. Landslide deposits were deleted from the map so that the distribution of bedrock formations and the newly created landslide inventory would exist on separate layers for the hazard analysis. Contacts between bedrock and surficial units were revised to better conform to the topographic contours of the U.S. Geological Survey 7.5-minute quadrangle. Air-photo interpretation, digital orthophoto quarter quadrangle photo review, and field reconnaissance was performed to assist in adjusting contacts between bedrock and surficial geologic units, and to review geologic unit lithology and geologic structure.

Additionally, the digital geologic map was modified to include interpretations of observations made during the aerial photograph review for the landslide inventory and field reconnaissance. In the field, observations were made of exposures, aspects of weathering, and general surface expression of the geologic units. The relation of the various geologic units to the development and abundance of landslides was noted.

The bedrock geology for the Pacifico Mountain Quadrangle consists of mostly Precambrian and Mesozoic crystalline rocks and some Tertiary sedimentary units. With the exception of the northern portion, the map area consists almost entirely of crystalline bedrock of the San Gabriel Mountains basement complex. A complex pre-Cenozoic history of intrusion and metamorphism has resulted in a variety of basement rock types in the Pacifico Mountain Quadrangle. The oldest bedrock exposed in the map area is Precambrian dark gray hornblende diorite gabbro (map symbol hdg), which is exposed in a few large, elongate, massive outcrops. This unit is slightly gneissic and is intruded by early Triassic Lowe Granodiorite.

Lowe Granodiorite is the predominant crystalline bedrock type exposed in the map area, and is primarily of granodiorite composition. It has been separated into several map units, each slightly variable in composition (Dibblee, 2001). These include a nearly white variety with minor biotite (lgd), a gray, biotite and hornblende-rich massive unit (lgdb), a gray unit with large phenocrysts of potassium feldspar and euhedral garnets (lgdp), and a light gray unit with small hornblende crystals, and slightly gneissic texture (lgdh).
Late Cretaceous granitic rocks intrude the Lowe Granodiorite. These intrusive rocks range in composition (Dibblee, 2001) from white to tan, medium- to fine-grained granite (gr), to light to medium gray, plagioclase feldspar-predominant quartz diorite (qd). Scattered dark gray, fine-grained mafic dike rocks (di) intrude both the Lowe Granodiorite and the late Cretaceous granitic rocks, with few exposures of mappable size shown on the map. The crystalline bedrock materials weather into smaller rock fragments with abundant grus.

A thick sequence of Tertiary sedimentary and volcanic rocks unconformably overlies the crystalline basement rocks. The oldest unit is the Vasquez Formation of late Oligocene age. The Vasquez Formation units consist of non-marine alluvial flood plain deposits and interbedded subaerial andesitic volcanic rocks. Vasquez Formation rocks cover the northern border of the quadrangle as a series of volcanic flows, sandstone and basal conglomerate (Dibblee, 2001). In the Pacifico Mountain Quadrangle two subunits have been mapped. The first is a dark gray to dark brown andesitic flow and flow-breccia deposit, which is locally amigdaloidal (Tva), hard, and generally weathers blocky with little soil development. The other unit is a maroon to reddish brown sandstone with interbedded conglomerate, locally containing granitic clasts (Tvs) and is generally hard and resistant.

Dibblee (2001) mapped terrestrial fluvial and lacustrine deposits of the Punchbowl Formation resting unconformably upon the Vasquez Formation near the extreme northern edge of the Pacifico Mountain Quadrangle. These sediments are weakly to moderately lithified. The gray, clay shale member (Tpc) is soft and locally gypsiferous, and the light pinkish-brown to tan arkosic sandstone member (Tps) is interbedded with some clay shale and conglomerate.

Quaternary surficial sediments unconformably overlie the deformed Tertiary strata and the crystalline basement complex. These sediments include Pleistocene unconsolidated older alluvial deposits (Qoa), located in Aliso Canyon, Soledad Canyon and Kentucky Springs Canyon on the western part of the study area and in Little Rock Canyon in the east. These deposits are slightly elevated areas of dissected coarse alluvial sand and gravel, containing crystalline bedrock gravel, with some boulders. Younger surficial sediments of Holocene age contain gravel with minor sand and silt within the valleys and canyon flood plains (Qa). Active channel deposits containing boulders, gravel and sand (Qg) are located within the drainage channels of Little Rock Creek, Kentucky Springs Creek, Aliso Creek, and smaller drainages. A discussion of Quaternary landslide deposits (Qls) can be found later in this report. A more detailed discussion of the Quaternary deposits in the Pacifico Mountain Quadrangle can be found in Section 1 of this report.

Structural Geology

The dominant structural element within the Pacifico Mountain Quadrangle is the San Gabriel Mountains basement complex, which covers most of the quadrangle and is locally incised by Aliso, Kentucky Springs, Little Rock and smaller creeks, oriented north to northwest. The Soledad Basin, a southwest-plunging syncline that includes
strata of the Vasquez Formation (Muehlberger, 1958)), underlies the northwestern quarter and the area comprising the northern quadrangle boundary. Minor folds and subparallel faults disrupt the symmetry of the Soledad Basin, especially near the northeastern map area, where the bedrock has been influenced by thrust faulting (Jahns and Muehlberger, 1954). A few northeast-trending faults have been mapped in the San Gabriel Mountains basement crystalline rocks. No fault rupture hazard zones have been delineated within the mapped area.

Landslide Inventory

As a part of the geologic data compilation, an inventory of existing landslides in the Pacifico Mountain Quadrangle was prepared by field reconnaissance and analysis of stereo-paired aerial photographs. A review was also carried out of digital orthophoto quarter-quadrangle maps and both previously published (Morton and Streitz, 1969) and unpublished (Hart, 2001) landslide maps.

Landslides were mapped at a scale of 1:24,000. For each landslide included on the map a number of characteristics (attributes) were compiled. These characteristics include the confidence of interpretation (definite, probable and questionable) and other properties, such as activity, thickness, and associated geologic unit(s). Landslides rated as definite and probable were carried into the landslide zoning as described later in this report. Landslides rated as questionable were not carried into the slope stability analysis due to the uncertainty of their existence. The completed landslide map was digitized, and the attributes were compiled in a database. A version of this landslide inventory is included with Plate 2.1.

Landslides are not common within the Pacifico Mountain Quadrangle, however a few large older rockslides were observed within the crystalline granodiorite bedrock materials. Most of the landslides identified lie outside of the project boundary within the Angeles National Forest and were not included in our inventory because those areas were not evaluated. Other landslides observed consisted of youthful, shallow debris slides of small to moderate size.

Because it is not within the scope of the Act to review and monitor grading practices to ensure past slope failures have been properly mitigated, all documented slope failures, whether or not surface expression currently exists, are included in the landslide inventory.

ENGINEERING GEOLOGY

Geologic Material Strength

To evaluate the stability of geologic materials under earthquake conditions, the geologic map units described above were ranked and grouped on the basis of their shear strength. Generally, the primary source for shear-strength measurements is geotechnical reports prepared by consultants on file with local government permitting departments. Shear-strength data for the units identified on the geologic map were obtained from the Los Angeles County Public Works Department (see Appendix A). The locations of rock and
soil samples taken for shear testing within the Pacifico Mountain Quadrangle are shown on Plate 2.1. Material strength values from the nearby Agua Dulce, Acton, Palmdale, and Ritter Ridge quadrangles were used for several geologic formations for which no shear test information was available within the Pacifico Mountain Quadrangle.

Shear strength data gathered from the above sources were compiled for each geologic map unit. Geologic units were grouped on the basis of average angle of internal friction (average phi) and lithologic character. Average (mean or median) phi values for each geologic map unit and corresponding strength group is summarized in Table 2.1. For most of the geologic strength groups (Table 2.2) in the map area, a single shear strength value was assigned and used in our slope stability analysis. A geologic material strength map was made based on the groupings presented in Table 2.1 and Table 2.2, and this map provides a spatial representation of material strength for use in the slope stability analysis.

Members of the Vasquez (Tv5 and Tva) and Punchbowl (Tps and Tpc) formations were subdivided further, as described below.

Adverse Bedding Conditions

Adverse bedding conditions are an important consideration in slope stability analyses. Adverse bedding conditions occur where the dip direction of bedded sedimentary rocks is roughly the same as the slope aspect, and where the dip magnitude is less than the slope gradient. Under these conditions, landslides can slip along bedding surfaces due to a lack of lateral support.

To account for adverse bedding in our slope stability evaluation, we used geologic structural data in combination with digital terrain data to identify areas with potentially adverse bedding, using methods similar to those of Brabb (1983). The structural data, derived from the geologic map database, were used to categorize areas of common bedding dip direction and magnitude. The dip direction was then compared to the slope aspect and, if the same, the dip magnitude and slope gradient categories were compared. If the dip magnitude category was less than or equal to the slope gradient category, but greater than 25 percent (4:1 slope), the area was marked as a potential adverse bedding area.

The Vasquez and Punchbowl formations, which contain interbedded sandstone and shale, were subdivided based on shear strength differences between hard volcanic and/or coarse-grained layers (higher strength), and highly weathered and/or fine-grained (lower strength) layers. Shear strength values for the fine- and coarse-grained lithologies were then applied to areas of favorable and adverse bedding orientation, which were determined from structural and terrain data as discussed above. It was assumed that "coarse-grained" material strength dominates where bedding dips into a slope (favorable bedding) while "fine-grained" material strength dominates where bedding dips out of a slope (adverse bedding). The geologic material strength map was modified by assigning the lower, fine-grained shear strength values to areas where potential adverse bedding
conditions were identified. The favorable and adverse bedding shear strength parameters for the Vasquez and Punchbowl formations are included in Table 2.1.

Existing Landslides

As discussed later in this report, the criteria for landslide zone mapping state that all existing landslides that are mapped as definite or probable are automatically included in the landslide zone of required investigation. Therefore, an evaluation of shear strength parameters for existing landslides is not necessary for the preparation of the zone map. However, in the interest of completeness for the material strength map, to provide relevant material strength information to project plan reviewers, and to allow for future revisions of our zone mapping procedures, we have collected and compiled shear strength data considered representative of existing landslides within the quadrangle.

The strength characteristics of existing landslides (Qls) must be based on tests of the materials along the landslide slip surface. Ideally, shear tests of slip surfaces formed in each mapped geologic unit would be used. However, this amount of information is rarely available, and for the preparation of the earthquake-induced landslide zone map it has been assumed that all landslides within the quadrangle have the same slip surface strength parameters. We collect and use primarily “residual” strength parameters from laboratory tests of slip surface materials tested in direct shear or ring shear test equipment. Back-calculated strength parameters, if the calculations appear to have been performed appropriately, have also been used.

Within the Pacifico Mountain Quadrangle, no shear tests of landslide slip surface materials were available for this study. The phi value presented in Table 2.1 reflects the values found in nearby and adjacent quadrangles for similar materials.
Table 2.1. Summary of the Shear Strength Statistics for the Pacifico Mountain Quadrangle.

PACIFICO MOUNTAIN QUADRANGLE

<table>
<thead>
<tr>
<th>SHEAR STRENGTH GROUPS</th>
<th>Formation Name</th>
<th>Number Tests</th>
<th>Mean/Median Phi (deg)</th>
<th>Mean/Median Group Phi (deg)</th>
<th>Mean/Median Group C (psf)</th>
<th>No Data: Similar Lithology</th>
<th>Phi Values Used in Stability Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1</td>
<td>hdg</td>
<td>3</td>
<td>37/41</td>
<td>38/39</td>
<td>182/175</td>
<td>lgdh, lgd db</td>
<td>lgd, qd, di</td>
</tr>
<tr>
<td></td>
<td>lgdp</td>
<td>1</td>
<td>40/40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qa</td>
<td>2</td>
<td>39/39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP 2</td>
<td></td>
<td></td>
<td></td>
<td>gr</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tvs(fbc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tva(fbc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tps(fbc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP 3</td>
<td>Qoa</td>
<td>15</td>
<td>30/30</td>
<td>30</td>
<td>150/135</td>
<td>Tvs(abc)</td>
<td>Tpc(abc)</td>
</tr>
<tr>
<td>GROUP 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

abc = adverse bedding condition, fine-grained material strength
fbc = favorable bedding condition, coarse-grained material strength
Formation abbreviations from Dibblee (2001)

Table 2.2. Summary of Shear Strength Groups for the Pacifico Mountain Quadrangle.
PART II

EARTHQUAKE-INDUCED LANDSLIDE HAZARD POTENTIAL

Design Strong-Motion Record

To evaluate earthquake-induced landslide hazard potential in the study area, a method of dynamic slope stability analysis developed by Newmark (1965) was used. The Newmark method analyzes dynamic slope stability by calculating the cumulative down-slope displacement for a given earthquake strong-motion time history. As implemented for the preparation of earthquake-induced landslide zones, the Newmark method necessitates the selection of a design earthquake strong-motion record to provide the “ground shaking opportunity.” For the Pacifico Mountain Quadrangle, selection of a strong motion record was based on an estimation of probabilistic ground motion parameters for modal magnitude, modal distance, and peak ground acceleration (PGA). The parameters were estimated from maps prepared by CGS for a 10 percent probability of being exceeded in 50 years (Petersen and others, 1996). The parameters used in the record selection are:

- Modal Magnitude: 7.6 to 7.8
- Modal Distance: 2.8 to 17.2 km
- PGA: 0.51 to 0.89 g

The strong-motion record selected for the slope stability analysis in the Pacifico Mountain Quadrangle was the Southern California Edison Lucerne record from the 1992 magnitude 7.3 Landers, California, earthquake. This record had a source to recording site distance of 1.1 km and a peak ground acceleration (PGA) of 0.80g. Although the magnitude and distance values from the Lucerne record do not fall within the range of the probabilistic parameters, this record was considered to be sufficiently conservative to be used in the stability analyses. The selected strong-motion record was not scaled or otherwise modified prior to its use in the analysis.

Displacement Calculation

The design strong-motion record was used to develop a relationship between landslide displacement and yield acceleration (a_y), defined as the earthquake horizontal ground acceleration above which landslide displacements take place. This relationship was prepared by integrating the design strong-motion record twice for a given acceleration value to find the corresponding displacement, and the process was repeated for a range of acceleration values (Jibson, 1993). The resulting curve in Figure 2.1 represents the full spectrum of displacements that can be expected for the design strong-motion record. This curve provides the required link between anticipated earthquake shaking and
estimates of displacement for different combinations of geologic materials and slope gradient, as described in the Slope Stability Analysis section below.

The amount of displacement predicted by the Newmark analysis provides an indication of the relative amount of damage that could be caused by earthquake-induced landsliding. Displacements of 30, 15 and 5 cm were used as criteria for rating levels of earthquake-induced landslide hazard potential based on the work of Youd (1980), Wilson and Keefer (1983), and a CGS pilot study for earthquake-induced landslides (McCrink and Real, 1996; McCrink, 2001). Applied to the curve in Figure 2.1, these displacements correspond to yield accelerations of 0.14, 0.18 and 0.24g. Because these yield acceleration values are derived from the design strong-motion record, they represent the ground shaking opportunity thresholds that are significant in the Pacifico Mountain Quadrangle.

![NEWMARK DISPLACEMENT vs. YIELD ACCELERATION](image)

Figure 2.1. Yield Acceleration vs. Newmark Displacement for the 1992 Landers Earthquake - Lucerne Record.
Slope Stability Analysis

A slope stability analysis was performed for each geologic material strength group at slope increments of 1 degree. An infinite-slope failure model under unsaturated slope conditions was assumed. A factor of safety was calculated first, followed by the calculation of yield acceleration from Newmark’s equation:

$$a_y = (FS - 1)g \sin \alpha$$

where FS is the Factor of Safety, g is the acceleration due to gravity, and α is the direction of movement of the slide mass, in degrees measured from the horizontal, when displacement is initiated (Newmark, 1965). For an infinite slope failure α is the same as the slope angle.

The yield accelerations resulting from Newmark’s equations represent the susceptibility to earthquake-induced failure of each geologic material strength group for a range of slope gradients. Based on the relationship between yield acceleration and Newmark displacement shown in Figure 2.1, hazard potentials were assigned as follows:

1. If the calculated yield acceleration was less than $0.14g$, Newmark displacement greater than 30 cm is indicated, and a HIGH hazard potential was assigned.
2. If the calculated yield acceleration fell between $0.14g$ and $0.18g$, Newmark displacement between 15 cm and 30 cm is indicated, and a MODERATE hazard potential was assigned.
3. If the calculated yield acceleration fell between $0.18g$ and $0.24g$, Newmark displacement between 5 cm and 15 cm is indicated, and a LOW hazard potential was assigned.
4. If the calculated yield acceleration was greater than $0.24g$, Newmark displacement of less than 5 cm is indicated, and a VERY LOW potential was assigned.

Table 2.3 summarizes the results of the stability analyses. The earthquake-induced landslide hazard potential map was prepared by combining the geologic material-strength map and the slope map according to this table.
<table>
<thead>
<tr>
<th>Geologic Material Strength Group (Average Phi)</th>
<th>Very Low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (38)</td>
<td>0 to 50%</td>
<td>50 to 57%</td>
<td>57 to 62%</td>
<td>> 62%</td>
</tr>
<tr>
<td>2 (34)</td>
<td>0 to 41%</td>
<td>41 to 48%</td>
<td>48 to 52%</td>
<td>> 52%</td>
</tr>
<tr>
<td>3 (30)</td>
<td>0 to 31%</td>
<td>31 to 37%</td>
<td>37 to 41%</td>
<td>> 41%</td>
</tr>
<tr>
<td>4 (26)</td>
<td>0 to 24%</td>
<td>24 to 30%</td>
<td>30 to 33%</td>
<td>> 33%</td>
</tr>
<tr>
<td>5 (16)</td>
<td>0 to 4%</td>
<td>4 to 10%</td>
<td>10 to 14%</td>
<td>> 14%</td>
</tr>
</tbody>
</table>

Table 2.3. Hazard Potential Matrix for Earthquake-Induced Landslides in Pacifico Mountain Quadrangle. Values in the table show the range of slope gradient (expressed as percent slope) corresponding to calculated Newmark displacement ranges from the design earthquake for each material strength group.

EARTHQUAKE-INDUCED LANDSLIDE HAZARD ZONE

Criteria for Zoning

Earthquake-induced landslide zones were delineated using criteria adopted by the California State Mining and Geology Board (DOC, 2000). Under these criteria, earthquake-induced landslide hazard zones are defined as areas that meet one or both of the following conditions:

1. Areas that have been identified as having experienced landslide movement in the past, including all mappable landslide deposits and source areas as well as any landslide that is known to have been triggered by historic earthquake activity.

2. Areas where the geologic and geotechnical data and analyses indicate that the earth materials may be susceptible to earthquake-induced slope failure.

These conditions are discussed in further detail in the following sections.

Existing Landslides

Existing landslides typically consist of disrupted soils and rock materials that are generally weaker than adjacent undisturbed rock and soil materials. Previous studies indicate that existing landslides can be reactivated by earthquake movements (Keefer, 1984). Earthquake-triggered movement of existing landslides is most pronounced in
steep head scarp areas and at the toe of existing landslide deposits. Although reactivation of deep-seated landslide deposits is less common (Keefer, 1984), a significant number of deep-seated landslide movements have occurred during, or soon after, several recent earthquakes. Based on these observations, **all existing landslides with a definite or probable confidence rating are included within the earthquake-induced landslide hazard zone.**

Geologic and Geotechnical Analysis

Based on the conclusions of a pilot study performed by CGS (McCrink and Real, 1996; McCrink, 2001), it has been concluded that earthquake-induced landslide hazard zones should encompass all areas that have a High, Moderate or Low level of hazard potential (see Table 2.3). This would include all areas where the analyses indicate earthquake displacements of 5 centimeters or greater. Areas with a Very Low hazard potential, indicating less than 5 centimeters displacement, are excluded from the zone.

As summarized in Table 2.3, all areas characterized by the following geologic strength group and slope gradient conditions are included in the earthquake-induced landslide hazard zone:

1. Geologic Strength Group 5 is included for all slope gradients.
2. Geologic Strength Group 4 is included for all slopes steeper than 24 percent.
3. Geologic Strength Group 3 is included for all slopes steeper than 31 percent.
4. Geologic Strength Group 2 is included for all slopes steeper than 41 percent.
5. Geologic Strength Group 1 is included for all slopes greater than 50 percent.

This results in approximately 19 percent of the mapped area of the quadrangle lying within the earthquake-induced landslide hazard zone for the Pacifico Mountain Quadrangle.

ACKNOWLEDGMENTS

The authors would like to thank the following individuals and organizations for their assistance in obtaining the data necessary to complete this project. Charles Nestle, Greg Johnson and Robert Larson from Los Angeles County Public Works provided assistance with data collection for Los Angeles County. Earl Hart made a preliminary landslide map of the quadrangle. Terilee McGuire, Barbara Wanish, Lee Wallinder and Bob Moscovitz provided GIS support at CGS. Barbara Wanish and Diane Vaughn prepared the final landslide hazard zone maps and the graphic displays for this report.
REFERENCES

California Department of Conservation, Division of Mines and Geology, 2000, Recommended criteria for delineating seismic hazard zones: Division of Mines and Geology Special Publication 118, 12 p.

Dibblee, T.W. Jr., 2001, Geologic Map of the Pacifico Mountain and Palmdale (south half) quadrangles, Los Angeles County, California: Dibblee Geological Foundation Map DF-76, scale 1:24,000.

Hart, E.W., 2001, Landslide inventory of the northwest portion of the Pacifico Mountain Quadrangle, Los Angeles County, California, Scale 1:24,000, unpublished.

Smith, T.C., 1996, Preliminary maps of seismic hazard zones and draft guidelines for evaluating and mitigating seismic hazards: California Geology, v. 49, no. 6, p. 147-150.

AIR PHOTOS

Department of County Engineers, Soil Survey Los Angeles County, photo numbers; 4-24 through 4-28 dated 3/29/68, and 7-52 through 7-56, and 7-95 through 7-100, dated 4/25/68, scale 1:24,000.

APPENDIX A
SOURCE OF ROCK STRENGTH DATA

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>NUMBER OF TESTS SELECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles County Public Works Department</td>
<td>21</td>
</tr>
</tbody>
</table>

Total Number of Shear Tests 21
SECTION 3
GROUND SHAKING EVALUATION REPORT

Potential Ground Shaking in the
Pacifico Mountain 7.5-Minute Quadrangle,
Los Angeles County, California

By

Mark D. Petersen*, Chris H. Cramer*, Geoffrey A. Faneros,
Charles R. Real, and Michael S. Reichle

California Department of Conservation
California Geological Survey
*Formerly with CGS, now with U.S. Geological Survey

PURPOSE

The Seismic Hazards Mapping Act (the Act) of 1990 (Public Resources Code, Chapter 7.8, Division 2) directs the California Department of Conservation (DOC), Division of Mines and Geology (DMG) [now called California Geological Survey (CGS)] to delineate Seismic Hazard Zones. The purpose of the Act is to reduce the threat to public health and safety and to minimize the loss of life and property by identifying and mitigating seismic hazards. Cities, counties, and state agencies are directed to use the Seismic Hazard Zone Maps in their land-use planning and permitting processes. The Act requires that site-specific geotechnical investigations be performed prior to permitting most urban development projects within the hazard zones. Evaluation and mitigation of seismic hazards are to be conducted under guidelines established by the California State Mining and Geology Board (DOC, 1997). The text of this report is on the Internet at http://gmw.consrv.ca.gov/shmp/webdocs/sp117.pdf

This section of the evaluation report summarizes the ground motions used to evaluate liquefaction and earthquake-induced landslide potential for zoning purposes. Included are ground motion and related maps, a brief overview on how these maps were prepared, precautionary notes concerning their use, and related references. The maps provided
herein are presented at a scale of approximately 1:150,000 (scale bar provided on maps), and show the full 7.5-minute quadrangle and portions of the adjacent eight quadrangles. They can be used to assist in the specification of earthquake loading conditions for the analysis of ground failure according to the “Simple Prescribed Parameter Value” method (SPPV) described in the site investigation guidelines (DOC, 1997). Alternatively, they can be used as a basis for comparing levels of ground motion determined by other methods with the statewide standard.

This section and Sections 1 and 2 (addressing liquefaction and earthquake-induced landslide hazards) constitute a report series that summarizes development of seismic hazard zone maps in the state. Additional information on seismic hazard zone mapping in California can be accessed on the California Geological Survey's Internet page: http://www.conservation.ca.gov/CGS/index.htm

EARTHQUAKE HAZARD MODEL

The estimated ground shaking is derived from the statewide probabilistic seismic hazard evaluation released cooperatively by the California Department of Conservation, Division of Mines and Geology [California Geological Survey], and the U.S. Geological Survey (Petersen and others, 1996). That report documents an extensive 3-year effort to obtain consensus within the scientific community regarding fault parameters that characterize the seismic hazard in California. Fault sources included in the model were evaluated for long-term slip rate, maximum earthquake magnitude, and rupture geometry. These fault parameters, along with historical seismicity, were used to estimate return times of moderate to large earthquakes that contribute to the hazard.

The ground shaking levels are estimated for each of the sources included in the seismic source model using attenuation relations that relate earthquake shaking with magnitude, distance from the earthquake, and type of fault rupture (strike-slip, reverse, normal, or subduction). The published hazard evaluation of Petersen and others (1996) only considers uniform firm-rock site conditions. In this report, however, we extend the hazard analysis to include the hazard of exceeding peak horizontal ground acceleration (PGA) at 10 percent probability of exceedance in 50 years on spatially uniform conditions of rock, soft rock, and alluvium. These soil and rock conditions approximately correspond to site categories defined in Chapter 16 of the Uniform Building Code (ICBO, 1997), which are commonly found in California. We use the attenuation relations of Boore and others (1997), Campbell (1997), Sadigh and others (1997), and Youngs and others (1997) to calculate the ground motions.

The seismic hazard maps for ground shaking are produced by calculating the hazard at sites separated by about 5 km. Figures 3.1 through 3.3 show the hazard for PGA at 10 percent probability of exceedance in 50 years assuming the entire map area is firm rock, soft rock, or alluvial site conditions respectively. The sites where the hazard is calculated are represented as dots and ground motion contours as shaded regions. The quadrangle of interest is outlined by bold lines and centered on the map. Portions of the eight
SEISMIC HAZARD EVALUATION OF THE PACIFICO MOUNTAIN QUADRANGLE

PACIFICO MOUNTAIN 7.5 MINUTE QUADRANGLE AND PORTIONS OF ADJACENT QUADRANGLES

10% EXCEEDANCE IN 50 YEARS PEAK GROUND ACCELERATION (g)

1998

FIRM ROCK CONDITIONS

Figure 3.1

Base map from GDT

Department of Conservation
California Geological Survey

Figure 3.1
PACIFICO MOUNTAIN 7.5 MINUTE QUADRANGLE AND PORTIONS OF ADJACENT QUADRANGLES
10% EXCEEDANCE IN 50 YEARS PEAK GROUND ACCELERATION (g)
1998

SOFT ROCK CONDITIONS

Base map from GDT

Department of Conservation
California Geological Survey

Figure 3.2
PACIFICO MOUNTAIN 7.5 MINUTE QUADRANGLE AND PORTIONS OF ADJACENT QUADRANGLES

10% EXCEEDANCE IN 50 YEARS PEAK GROUND ACCELERATION (g) 1998

ALLUVIUM CONDITIONS

Base map from GDT

Department of Conservation
California Geological Survey

Figure 3.3
adjacent quadrangles are also shown so that the trends in the ground motion may be more apparent. We recommend estimating ground motion values by selecting the map that matches the actual site conditions, and interpolating from the calculated values of PGA rather than the contours, since the points are more accurate.

APPLICATIONS FOR LIQUEFACTION AND LANDSLIDE HAZARD ASSESSMENTS

Deaggregation of the seismic hazard identifies the contribution of each of the earthquakes (various magnitudes and distances) in the model to the ground motion hazard for a particular exposure period (see Cramer and Petersen, 1996). The map in Figure 3.4 identifies the magnitude and the distance (value in parentheses) of the earthquake that contributes most to the hazard at 10 percent probability of exceedance in 50 years on alluvial site conditions (predominant earthquake). This information gives a rationale for selecting a seismic record or ground motion level in evaluating ground failure. However, it is important to keep in mind that more than one earthquake may contribute significantly to the hazard at a site, and those events can have markedly different magnitudes and distances. For liquefaction hazard the predominant earthquake magnitude from Figure 3.4 and PGA from Figure 3.3 (alluvium conditions) can be used with the Youd and Idriss (1997) approach to estimate cyclic stress ratio demand. For landslide hazard the predominant earthquake magnitude and distance can be used to select a seismic record that is consistent with the hazard for calculating the Newmark displacement (Wilson and Keefer, 1983). When selecting the predominant earthquake magnitude and distance, it is advisable to consider the range of values in the vicinity of the site and perform the ground failure analysis accordingly. This would yield a range in ground failure hazard from which recommendations appropriate to the specific project can be made. Grid values for predominant earthquake magnitude and distance should not be interpolated at the site location, because these parameters are not continuous functions.

A preferred method of using the probabilistic seismic hazard model and the “simplified Seed-Idriss method” of assessing liquefaction hazard is to apply magnitude scaling probabilistically while calculating peak ground acceleration for alluvium. The result is a “magnitude-weighted” ground motion (liquefaction opportunity) map that can be used directly in the calculation of the cyclic stress ratio threshold for liquefaction and for estimating the factor of safety against liquefaction (Youd and Idriss, 1997). This can provide a better estimate of liquefaction hazard than use of predominate magnitude described above, because all magnitudes contributing to the estimate are used to weight the probabilistic calculation of peak ground acceleration (Real and others, 2000). Thus, large distant earthquakes that occur less frequently but contribute more to the liquefaction hazard are appropriately accounted for.

Figure 3.5 shows the magnitude-weighted alluvial PGA based on Idriss’ weighting function (Youd and Idriss, 1997). It is important to note that the values obtained from this map are pseudo-accelerations and should be used in the formula for factor of safety without any magnitude-scaling (a factor of 1) applied.
LIQUEFACTION OPPORTUNITY

Figure 3.5

Department of Conservation
California Geological Survey

Base map from GDT
USE AND LIMITATIONS

The statewide map of seismic hazard has been developed using regional information and is not appropriate for site specific structural design applications. Use of the ground motion maps prepared at larger scale is limited to estimating earthquake loading conditions for preliminary assessment of ground failure at a specific location. We recommend consideration of site-specific analyses before deciding on the sole use of these maps for several reasons.

1. The seismogenic sources used to generate the peak ground accelerations were digitized from the 1:750,000-scale fault activity map of Jennings (1994). Uncertainties in fault location are estimated to be about 1 to 2 kilometers (Petersen and others, 1996). Therefore, differences in the location of calculated hazard values may also differ by a similar amount. At a specific location, however, the log-linear attenuation of ground motion with distance renders hazard estimates less sensitive to uncertainties in source location.

2. The hazard was calculated on a grid at sites separated by about 5 km (0.05 degrees). Therefore, the calculated hazard may be located a couple kilometers away from the site. We have provided shaded contours on the maps to indicate regional trends of the hazard model. However, the contours only show regional trends that may not be apparent from points on a single map. Differences of up to 2 km have been observed between contours and individual ground acceleration values. We recommend that the user interpolate PGA between the grid point values rather than simply using the shaded contours.

3. Uncertainties in the hazard values have been estimated to be about +/- 50 percent of the ground motion value at two standard deviations (Cramer and others, 1996).

4. Not all active faults in California are included in this model. For example, faults that do not have documented slip rates are not included in the source model. Scientific research may identify active faults that have not been previously recognized. Therefore, future versions of the hazard model may include other faults and omit faults that are currently considered.

5. A map of the predominant earthquake magnitude and distance is provided from the deaggregation of the probabilistic seismic hazard model. However, it is important to recognize that a site may have more than one earthquake that contributes significantly to the hazard. Therefore, in some cases earthquakes other than the predominant earthquake should also be considered.

Because of its simplicity, it is likely that the SPPV method (DOC, 1997) will be widely used to estimate earthquake shaking loading conditions for the evaluation of ground failure hazards. It should be kept in mind that ground motions at a given distance from an earthquake will vary depending on site-specific characteristics such as geology, soil properties, and topography, which may not have been adequately accounted for in the regional hazard analysis. Although this variance is represented to some degree by the
recorded ground motions that form the basis of the hazard model used to produce Figures 3.1, 3.2, and 3.3, extreme deviations can occur. More sophisticated methods that take into account other factors that may be present at the site (site amplification, basin effects, near source effects, etc.) should be employed as warranted. The decision to use the SPPV method with ground motions derived from Figures 3.1, 3.2, or 3.3 should be based on careful consideration of the above limitations, the geotechnical and seismological aspects of the project setting, and the “importance” or sensitivity of the proposed building with regard to occupant safety.

REFERENCES

Jennings, C.W., compiler, 1994, Fault activity map of California and adjacent areas: California Department of Conservation, Division of Mines and Geology, California Geologic Data Map Series, map no. 8.

Plate 1.1 Quaternary Geologic Map of portions of the Pacifico Mountain 7.5-Minute Quadrangle, California.

Base map derived from U.S.G.S. 30 x 60 minute series.

PACIFICO MOUNTAIN QUADRANGLE

B = Pre-Quaternary bedrock.
See "Bedrock and Surficial Geology" in Section 1 of report for descriptions of units.

Modified from Dibblee (2001).

References:
Plate 1.2 Depth to historically shallow ground water, Pacifico Mountain 7.5-Minute Quadrangle, California.
Plate 2.1 Landslide Inventory and shear test sample locations, Pacifico Mountain 7.5-Minute Quadrangle, California.